\qquad

Key Concept and Vocabulary

Product of Powers Property:

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

Power of a Power Property

$$
\left(a^{m}\right)^{n} \cdot a^{m n}
$$

Power of Quotient Property:

$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$, where $b \neq 0$

Zero Exponents

$a^{0}=1$, where $a \neq 0$

Quotient of Powers Property:

$$
\frac{a^{m}}{a^{n}}=a^{m-n}, \text { where } a \neq 0
$$

Power of a Product Property

$$
(a b)^{m}=a^{m} b^{m}
$$

Negative Exponents:
$a^{-n}=\frac{1}{a^{n}}$, where $a \neq 0$

Skill Examples

1. $x^{2} \cdot x^{4}=x^{2+4}=x^{6}$
2. $\left(w^{5}\right)^{3}=w^{5 \cdot 3}=w^{15}$
3. $\frac{y^{6}}{y^{6}}=y^{6-6}=y^{0}=1$
4. $\left(\frac{c}{2}\right)^{3}=\frac{c^{3}}{2^{3}}=\frac{c^{3}}{8}$
5. $4 g^{-3}=\frac{4}{g^{3}}$

Application Example

6. Write the area of the circle as a monomial.

$$
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& =\pi\left(2 x^{2}\right)^{2} \\
& =\pi\left(2^{2}\right)\left(x^{2}\right)^{2} \\
& =4 \pi x^{4}
\end{aligned}
$$

\therefore The area of the circle is $4 \pi x^{4}$ square units.

PRACTICE makes PURR-FECT ${ }^{\text {m }}$

Check your answers at BigIdeasMath.com.
Simplify the expression using only positive exponents.
7. $\frac{v^{7}}{v^{4}}=$ \qquad
8. $\left(q^{2}\right)^{5}=$ \qquad
9. $r^{3} \cdot r^{3}=$ \qquad
10. $(3 h)^{3}=$ \qquad
11. $\left(\frac{5}{x^{2}}\right)^{2}=$ \qquad
12. $\left(2 k^{-3}\right)^{2}=$ \qquad
13. CUBE Write the volume of the cube as a monomial.
$V=$ \qquad

