\qquad

Exponents

Key Concept and Vocabulary

Zero Exponents

Any nonzero number to the zero power is equal to 1 . Zero to the zero power, 0^{0}, is undefined.

Numbers: $6^{0}=1$
Algebra: $a^{0}=1$, where $a \neq 0$

Negative Exponents

For any integer n and any number a not equal to $0, a^{-n}$ is equal to 1 divided by a^{n}.
Numbers: $4^{-2}=\frac{1}{4^{2}}$
Algebra: $a^{-n}=\frac{1}{a^{n}}$, where $a \neq 0$

Skill Examples

1. $5^{-3}=\frac{1}{5^{3}}=\frac{1}{125}$
2. $3^{-6} \cdot 3^{6}=3^{-6+6}=3^{0}=1$
3. $\frac{4^{2}}{4^{5}}=4^{2-5}=4^{-3}=\frac{1}{4^{3}}=\frac{1}{64}$
4. $\frac{7 b^{-4}}{b^{3}}=7 b^{-4-3}=7 b^{-7}=\frac{7}{b^{7}}$

Application Example

5. A faucet leaks water at a rate of 5^{-4} liter per second. How many liters of water leak from the faucet in 1 hour?
There are 3600 seconds in 1 hour. Multiply the time by the rate.

$$
\begin{aligned}
3600 \cdot 5^{-4} & =3600 \cdot \frac{1}{5^{4}} \\
& =3600 \cdot \frac{1}{625} \\
& =5 \frac{19}{25}=5.76
\end{aligned}
$$

\therefore So, 5.76 liters of water leak from the faucet in 1 hour.

PRACTICE makes PURR-FECT ${ }^{\text {M }}$

Check your answers at BigIdeasMath.com.
Evaluate the expression.
6. $4^{-4}=-\frac{1}{256}$
7. $8^{-2}=\quad \frac{1}{64}$
8. $(-5)^{-6}=\quad \frac{1}{15,625}$
9. $9^{-4} \cdot 9^{4}=\underline{1}$
10. $\frac{2^{3}}{2^{8}}=-\frac{1}{32}$
11. $\frac{5^{3}}{5^{5}}=-\frac{1}{25}$
12. $\frac{(-4)^{4}}{(-4)^{6}}=-\quad \frac{1}{16}$
13. $\frac{1}{3^{-3}} \cdot \frac{1}{3^{7}}=$ \qquad
14. $\frac{4^{5} \cdot 4^{-2}}{4^{4}}=$ \qquad

Simplify. Write the expression using only positive exponents.
15. $\frac{3 x^{4}}{x^{9}}=$ \qquad $\frac{3}{x^{5}}$
16. $\frac{a^{-5}}{14 a^{8}}=-\frac{1}{14 a^{13}}$
17. $\frac{3 w^{-4}}{w^{-2}}=\quad \frac{3}{w^{2}}$

METRIC UNITS In Exercises 18-21, use the table.
18. How many millimeters are in a centimeter? $\quad 10$
19. How many decimeters are in a micrometer?
20. How many nanometers are in a centimeter? \qquad
21. How many micrometers are in a millimeter? \qquad

Unit of Length	Length
decimeter	$10^{-1} \mathrm{~m}$
centimeter	$10^{-2} \mathrm{~m}$
millimeter	$10^{-3} \mathrm{~m}$
micrometer	$10^{-6} \mathrm{~m}$
nanometer	$10^{-9} \mathrm{~m}$

