REVIEW: Zero and Negative **Exponents**

Key Concept and Vocabulary

Zero Exponents

Any nonzero number to the zero power is equal to 1. Zero to the zero power, 0^0 , is undefined.

Numbers: $6^0 = 1$

Algebra: $a^0 = 1$, where $a \neq 0$

Skill Examples

- **1.** $5^{-3} = \frac{1}{5^3} = \frac{1}{125}$
- **2** $3^{-6} \cdot 3^6 = 3^{-6+6} = 3^0 = 1$
- **3.** $\frac{4^2}{4^5} = 4^{2-5} = 4^{-3} = \frac{1}{4^3} = \frac{1}{64}$
- **4.** $\frac{7b^{-4}}{b^3} = 7b^{-4-3} = 7b^{-7} = \frac{7}{b^7}$

Negative Exponents Exponents For any integer *n* and any number *a* not equal to 0, a^{-n} is equal to 1 divided by a^n .

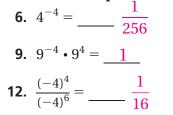
Name

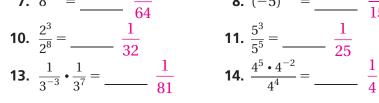
Numbers: $4^{-2} = \frac{1}{4^2}$ Algebra: $a^{-n} = \frac{1}{a^n}$, where $a \neq 0$

Application Example

5. A faucet leaks water at a rate of 5^{-4} liter per second. How many liters of water leak from the faucet in 1 hour?

There are 3600 seconds in 1 hour. Multiply the time by the rate.

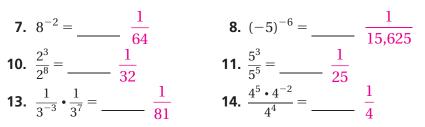

$$3600 \cdot 5^{-4} = 3600 \cdot \frac{1}{5^4}$$
$$= 3600 \cdot \frac{1}{625}$$
$$= 5\frac{19}{25} = 5.76$$


So, 5.76 liters of water leak from the faucet in 1 hour.

Check your answers at BigIdeasMath.com. —

PRACTICE MAKES *PURR*-FECT[™]

Evaluate the expression.


Simplify. Write the expression usin S.

15.
$$\frac{3x^4}{x^9} = \underline{\qquad} \frac{3}{x^5}$$

16.
$$\frac{a^{-5}}{14a^8} = \underline{\qquad} \frac{1}{14a^{13}}$$

METRIC UNITS In Exercises 18–21, use the table.

- **18.** How many millimeters are in a centimeter? 10
- **19.** How many decimeters are in a micrometer? _____ $\overline{10^5}$
- **20.** How many nanometers are in a centimeter? 10^7
- **21.** How many micrometers are in a millimeter? 10^3

17.
$$\frac{3w^{-4}}{w^{-2}} = \underline{\qquad} \frac{3}{w^2}$$

Unit of Length	Length
decimeter	$10^{-1}\mathrm{m}$
centimeter	$10^{-2} {\rm m}$
millimeter	$10^{-3} {\rm m}$
micrometer	$10^{-6} {\rm m}$
nanometer	$10^{-9} { m m}$

Topic 22.3