\qquad

Powers Property

Key Concept and Vocabulary
Product of Powers Property
To multiply powers with the same base, add their exponents.

Numbers: $2^{3} \cdot 2^{4}=2^{3+4}=2^{7}$
Algebra: $a^{m} \cdot a^{n}=a^{m+n}$

Visual Model

$$
\begin{aligned}
2^{3} \cdot 2^{4} & =(2 \cdot 2 \cdot 2) \cdot(2 \cdot 2 \cdot 2 \cdot 2) \\
& =2^{7} \\
(-4)^{2} \cdot(-4)^{3} & =[(-4) \cdot(-4)][(-4) \cdot(-4) \cdot(-4)] \\
& =(-4)^{5}
\end{aligned}
$$

Skill Examples

1. $5^{2} \cdot 5^{5}=5^{2+5}=5^{7}$
2. $(-3)^{8} \cdot(-3)^{2}=(-3)^{8+2}=(-3)^{10}$
3. $\left(7^{2}\right)^{3}=7^{2} \cdot 7^{2} \cdot 7^{2}=7^{2+2+2}=7^{6}$
4. $\left(y^{3}\right)^{4}=y^{3} \cdot y^{3} \cdot y^{3} \cdot y^{3}=y^{3+3+3+3}=y^{12}$
5. $(3 x)^{3}=3 x \cdot 3 x \cdot 3 x$

$$
\begin{aligned}
& =(3 \cdot 3 \cdot 3) \cdot(x \cdot x \cdot x) \\
& =3^{1+1+1} \cdot x^{1+1+1} \\
& =3^{3} \cdot x^{3} \\
& =27 x^{3}
\end{aligned}
$$

Application Example

6. A gigabyte of computer storage space is 2^{30} bytes. A computer has a total storage space of 128 gigabytes. How many bytes of total storage space does the computer have? Write your answer as a power.
Notice that 128 can be written as a power, 2^{7}.
Total number $=$ Number of bytes . Number of bytes $\quad=$ in a gigabyte \quad of gigabytes

$$
\begin{aligned}
& =2^{30} \cdot 2^{7} \\
& =2^{30+7} \\
& =2^{37}
\end{aligned}
$$

PRACTICE makes PURR-FECT ${ }^{\text {m }}$

\therefore The computer has 2^{37} bytes of total storage space.

Simplify the expression. Write your answer as a power.
7. $8^{3} \cdot 8^{6}=$ \qquad
10. $(-5)^{3} \cdot(-5)^{7}=$ \qquad
13. $\left(9^{4}\right)^{3}=$ \qquad 14. $\left(4^{5}\right)^{3}=$ \qquad
16. $\left(z^{3}\right)^{3}=$ \qquad 17. $\left(n^{5}\right)^{2}=$ \qquad 18. $\left(w^{2}\right)^{4}=$ \qquad

Simplify the expression.

19. $(9 y)^{2}=$ \qquad 20. $(3 b)^{4}=$ \qquad 21. $(2 a)^{5}=$ \qquad

