
REVIEW: Evaluating Expressions

Name _

Skill Examples

- **1.** When x = 5, 3x + 4 is 3(5) + 4 = 19.
- **2.** When x = -1, 5x + 7 is 5(-1) + 7 = 2.
- **3.** When x = 3, $4x^2$ is $4(3^2) = 36$.
- 4. When x = 4, $x^3 + 1$ is $4^3 + 1 = 65$.

Visual Model

x	2 <i>x</i> + 3	Value of Expression
1	2(1) + 3	5
2	2(2) + 3	7
3	2(<mark>3</mark>) + 3	9
4	2(4) + 3	11

Application Example

C =

5. For a Celsius temperature *C* the Fahrenheit temperature *F* is $\frac{9}{5}C$ + 32. Find *F* when

25°.

$$\frac{9}{5}C + 32 = \frac{9}{5}(25) + 32$$

 $= 45 + 32$
 $= 77$

• The Fahrenheit temperature is 77°.

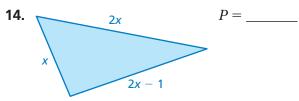
Check your answers at BigIdeasMath.com. —

7. When x = -1, 3x + 9 = _____.

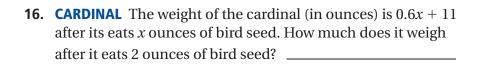
9. When $x = \frac{1}{2}$, $3x^2 =$ _____.

11. When x = 0, $4x^2 + 5 =$ _____.

13. When $x = 2\frac{1}{2}$, 6x + 3 =_____.


Evaluate the expression.

- **6.** When x = 2, 3x 1 = _____.
- **8.** When x = 4, $x^2 5 =$ _____.


PRACTICE MAKES PURR-FECT

- **10.** When x = 3.1, 5x + 0.5 = _____.
- **12.** When x = 10, $x^2 8x + 11 =$ _____.

Evaluate the perimeter when x = 3.

15. x + 1 2x - 1 P =_____

