REVIEW: Prime and Composite Numbers
Key Concept and Vocabulary
A prime number has only 1 and itself as factors. The first 5 prime numbers are $2,3,5,7$, and 11 .

composite

Skill Examples

Prime Factorization

1. $30=2 \cdot 3 \cdot 5$
2. $42=2 \cdot 3 \cdot 7$
3. $81=3 \cdot 3 \cdot 3 \cdot 3$
4. $91=7 \cdot 13$
5. $89=89$ (Prime)

PRACTICE MAKES PURR-FECT ${ }^{\text {m" }}$

Write the prime factorization of the number.

7. $45=$ \qquad
$3 \cdot 3 \cdot 5$ $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
8. $100=$ \qquad 9. $63=$ \qquad
9. $256=$ \qquad 11. $54=$ \qquad 12. $55=$ \qquad
10. $121=$ \qquad 14. $98=$ \qquad 15. $113=$ \qquad

Application Example
6. You get a paycheck every 2 weeks. Your annual salary is $\$ 30,000$. Can you get the same amount for each paycheck?

$$
30,000=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 5
$$

$\therefore \quad 30,000$ is not divisible by 13 , so you cannot have 26 paychecks of equal size.
16. Use a factor tree to find the prime factorization of 36 .

Sample factor tree:

17. EQUAL PAYCHECKS You get a paycheck every 2 weeks. Your annual salary is $\$ 39,000$. Can you get the same amount for each paycheck? Explain why or why not. yes; $39,000=2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 13$; Because 39,000 is divisible by 2 and 13, you can have 26 paychecks of $\$ 1500$.
18. LISTING PRIME NUMBERS List all the prime numbers that are less than 50.

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47
$$

