REVIEW: Prime and **Composite Numbers**

Key Concept and Vocabulary -

A prime number has only Prime Numbers 1 and itself as factors. The first 5 prime numbers are 2, 3, 5, 7, and 11. $24 = 2 \cdot 2 \cdot 2 \cdot 3$ prime factorization composite

Visual Model

You can use a **factor tree** to find the prime factorization of a composite number.

Skill Examples

Prime Factorization

1.
$$30 = 2 \cdot 3 \cdot 5$$

2.
$$42 = 2 \cdot 3 \cdot 7$$

3.
$$81 = 3 \cdot 3 \cdot 3 \cdot 3$$

4.
$$91 = 7 \cdot 13$$

5.
$$89 = 89$$
 (Prime)

Application Example

6. You get a paycheck every 2 weeks. Your annual salary is \$30,000. Can you get the same amount for each paycheck?

$$30,000 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 5$$

30,000 is not divisible by 13, so you cannot have 26 paychecks of equal size.

PRACTICE MAKES PURR-FECT™

Write the prime factorization of the number.

7.
$$45 = 3 \cdot 3 \cdot 5$$
 $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ **8.** $100 = 2 \cdot 2 \cdot 5 \cdot 5$ **9.** $63 = 3 \cdot 3 \cdot 7$

8.
$$100 = 2 \cdot 2 \cdot 5 \cdot 5$$

10.
$$256 =$$
 11. $54 =$ **2 • 3 • 3 • 3 12.** $55 =$ **5 • 11**

11.
$$54 = 2 \cdot 3 \cdot 3 \cdot 3$$

4.
$$98 = 2 \cdot 7 \cdot 7$$

13.
$$121 = 11 \cdot 11$$
 14. $98 = 2 \cdot 7 \cdot 7$ **15.** $113 = 113$ (prime)

16. Use a factor tree to find the prime factorization of 36.

 $36 = 2 \cdot 2 \cdot 3 \cdot 3$ Sample factor tree:

- 17. EQUAL PAYCHECKS You get a paycheck every 2 weeks. Your annual salary is \$39,000. Can you get the same amount for each paycheck? Explain why or why not. yes; $39,000 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 13$; Because 39,000 is divisible by 2 and 13, you can have 26 paychecks of \$1500.
- **18. LISTING PRIME NUMBERS** List all the prime numbers that are less than 50.